Geometrical Inverse Preconditioning for Symmetric Positive Definite Matrices

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometrical Inverse Preconditioning for Symmetric Positive Definite Matrices

We focus on inverse preconditioners based on minimizing F(X) = 1− cos(XA, I), where XA is the preconditioned matrix and A is symmetric and positive definite. We present and analyze gradient-type methods to minimize F(X) on a suitable compact set. For this, we use the geometrical properties of the non-polyhedral cone of symmetric and positive definite matrices, and also the special properties of...

متن کامل

DDtBe for Band Symmetric Positive Definite Matrices

We present a new parallel factorization for band symmetric positive definite (s.p.d) matrices and show some of its applications. Let A be a band s.p.d matrix of order n and half bandwidth m. We show how to factor A as A =DDt Be using approximately 4nm2 jp parallel operations where p =21: is the number of processors. Having this factorization, we improve the time to solve Ax = b by a factor of m...

متن کامل

On Adaptive Weighted Polynomial Preconditioning for Hermitian Positive Definite Matrices

The conjugate gradient algorithm for solving Hermitian positive definite linear systems is usually combined with preconditioning in order to speed up convergence. In recent years, there has been a revival of polynomial preconditioning, motivated by the attractive features of the method on modern architectures. Standard techniques for choosing the preconditioning polynomial are based only on bou...

متن کامل

Supervised LogEuclidean Metric Learning for Symmetric Positive Definite Matrices

Metric learning has been shown to be highly effective to improve the performance of nearest neighbor classification. In this paper, we address the problem of metric learning for symmetric positive definite (SPD) matrices such as covariance matrices, which arise in many real-world applications. Naively using standard Mahalanobis metric learning methods under the Euclidean geometry for SPD matric...

متن کامل

"Compress and eliminate" solver for symmetric positive definite sparse matrices

We propose a new approximate factorization for solving linear systems with symmetric positive definite sparse matrices. In a nutshell the algorithm is to apply hierarchically block Gaussian elimination and additionally compress the fill-in. The systems that have efficient compression of the fill-in mostly arise from discretization of partial differential equations. We show that the resulting fa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2016

ISSN: 2227-7390

DOI: 10.3390/math4030046